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ABSTRACT

An important topic presented in introductory statistics courses is the estimation

of population parameters using samples. Students learn that when estimating

population variances using sample data, we always get an underestimate of

the population variance if we divide by n rather than by n-1. One implication of

this correction is that the degree of bias gets smaller as the sa.nple gets larger

and larger. This paper explains the nature of bias and correction in the

estimated variance and discusses the properties of a "good" estimator. A

computer program was included to illustrate the bias concept and is included

in this paper. This type of treatment is needed, because surprising few

students or researchers understand this bias and why a correction for bias is

needed.
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An important topic presented in introductory statistics courses is the

estimation of population parameters using samples. In many statistical studies

it may be too costly, too time-consuming, or simply impossible to gather data

from the entire population. Methods have been developed to estimate these

population parameters and this paper will explain the nature of bias and

correction in the estimated variance and discuss the properties of a "good"

estimator. A BASIC computer program for an IBM PC is included in Appendix

1; this program can be used to teach students the concept of bias in estimating

variance.

Variance is what is called a point estimate. A point estimate is computed

from a given sample and has a single numerical value that acts as an

approximation of the population parameter. Interval estimates (not discussed

in this paper) specify limits between which population parameters fall with a

given probability. These interval estimates are called confidence intervals.

Before discussing parameter estimates, a review of the basic computational

statistics for population mean, variance, and standard deviation will be

presented (Harnett, 1970; Ott, 1998). The mean, a measure of central

tendency, is defined as:

n

la = E[s] = (1/N) I xi. , where N = number in population

i=1

The variance, a measure of variability, is defined as:

02 = E[(x R)2] = ON Z (i R)2

1

(1)

(2)



The standard deviation, a measure of variability, is defined as the square root

of the variance. It is used because the variance is in a squared metric, and

people are more comfortable thinking in units of dollars rather than squared

dollars, or 10 rather than squared 10, and so forth.

a = 4(02) (3)

Since population data are seldom available, it is often necessary to

estimate parameters using sample data. There are four criteria which are

considered when deciding if an estimator is a "good" estimator. These criteria

are unbiasedness, consistency, efficiency, and sufficiency (Harnett, 1970;

Khazanie, 1990). The cost of making incorrect estimates from sample data

should be minimized; therefore, it is very important to chose the correct

estimation procedure. In this paper, parameters will be referred to as 0.

Parameter estimates will be referred to as O. An example is if 0 = a2, then

UNBIASEDNESS

Unbiasedness is the first property of a "good" estimator. Carl Gauss is

given credit for first presenting this concept. Unbiasedness is defined by

Harnett (1970, p. 188) as the following:

An estimator is said to be unbiased if the expected value of the
estimator is equal to the parameter being estimated, or if

E[0] = 0 (4)
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Ideally, the bias should be equal zero. A biased estimator will either

underestimate (Figure 1(c)) or overestimate (Figure 1(b)) the parameter 0. If

an estimator is "good" and several samples are taken from a population, then

the mean value of these samples should be close to the parameter value

(Figure 1(a)). Khazanie (1990) illustrated these unbiasedness concepts as

follows:

E[a]

(a). 11 is unbiased

estimator of 6

FIGURE 1

Curves represent sampling

distributions of 0

o EA

(b). overestimates

0

I

E(] 6

(c).

underestimates 0

The sample mean (MI, the most widely used estimator, is an unbiased

estimator of This fact can be shown as follows (Harnett, 1970, p. 159).

Define M = (1/n) (xi+ x2 + . . + ?Sn )

ELM] = Ej(1/n) (?si +12 + . . . + n

= 1/n E[ 4->12 + + xrd

= 1 /12 ( E[/1] + Ek2) + + EL)InD

=1M(v+R+...+g

3
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=

titA =

. ELM] =
(6)

It would be nice if the sample variance ( s2 = 1/n [I (x-)2]), the second

most widely used estimator, was also an unbiased estimator of the population

variance (02), but s2 is not an unbiased estimator of (32 ( E[s2] a2) (Harnett,

1970). It is a fact that s2 always underestimates (32 by a factor of (n-1)/n. The

following relationship results from that fact:

E[s21= (32 {(n-1)/D) (7)

or by rewriting (7)

E [ s 2] = 02 - 02/n (8)

From formula (8) it can be seen that the bias is equal (32/n. If n is large, then

02/n becomes very small. That fact reinforces the idea that it is important to

have a large sample size, if possible. The value of (32/n can be important, as

illustrated in the next example. Assume that the population variance is 02 =

50 and calculate the estimate variance, s2, from samples of size n=5, n=10,

and n=20. The estimate from n=5 will be 20% too low, since

E[s2] = 50 - (50/5) = 40.

The estimate from rk=10 would be 10°h too low and the estimate from n=20

would be 5% too low. This illustrates how sample size effects the

underestimates of variance.

4
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It is very easy to correct for this bias in the variance formula (7). All that

needs to be done is to multiply formula (7) on both sides by the reciprocal of

(n-1)/11. which would be n/(n-1) (Harnett, 1970).

{n/0-1)) E[s2] = 0/(n-1)}{(1/n) x 0.0%4)2)

S2 = {1/(n-1)} os-N2

The formula (9) will be referred to as the unbiased estimate of 02 and

(9)

denoted by S2.

Formula (7) is essential in deriving the unbiased variance estimate;

ther ire, the proof of formula (7) in included in this paper. The proof is as

fol'ows (Harnett, 1970):

In the first step of the proof, (x-p) - (M-p) is substituted for the term (N-M), since

they are equivalent mathematically.

E[s2] = E[(1/n) (x-M)2]

= (1/a) E[1{(21-14 (M-P)}2)

Note: Since (a+b)2 = a2 + 2ab + b2, the next step follows.

= (1 /n) E[Z(2..(-142] (2/a) EII(M-p)(21-P)) + (1/s) EIZ(M-P)21

Note: In the second term, I (M-p) is a constant, so it can be taken outside

the expectation sign.

= (1/a) E[I(1.(-02] (Vs) /(M-P) E[(N-P)] + (1 In) E[E(M-P)2]

5



Note: Let E[(x-p)] = (M-p)

Let E[(x-p)2] = a2

Let ERM-p)21 = o2/n

= (1k1) Ea2 (2/11) E(..M-IMM-p) + (lt) E(02/E1)

= (1/n) Icr2 (24j) 1(M-p)2 + (1/n) 1(02/n)

= cr2 - 2(02/n) + (cy2In)

=

... E[s2] =

Unbiasedness has one weakness in that it requires only the average value

of '6 equal 0. The values of7can be very far from 0 and still average 0. The

next property, consistency, takes the variability of -6. into consideration.

CONSISTENCY

The definition and properties of consistency given by Harnett (1970, p. 191)

are:

Definition: An estimator is said to be consistent if it yields estimates

which approach the population parameter being estimated as n

becomes larger.

Properties: 1). Var (6) 4 0 as ri., 03

2). '4 is unbiased ( ER = 0 )

6
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Rahman (1968, p. 301) emphasized that "estimates" can be both consistent

and unbiased, neither, or one or the other in the following quotation:

Nevertheless, it is to be emphasized that consistency is a very different

concept from unbiasedness, and it is also derived from a different

theory of estimation. (Unbiasedness is derived from the theory of least

squares.) As such, a consistent estimate may or may not be unbiased.

Conversely, an unbiased estimate may or may not be consistent.

Despite this, there exist estimates (such as the sample.mean) which

are both unbiased and consistent.

R. A. Fisher introduced the consistency property in the 1920's.

EFFICIENCY

The third property, efficiency, concerns the reliability of the estimate of 0 for

a given sample size. Khazanie (1990, P. 303) defined efficiency and

illustrated the concept of efficiency as follows:

If Eli and 02 are two unbiased estimators of 8, and 131 is more

efficient than 02 if the variance of the sampling distribution of -61

is less than the variance of the sampling distribution of 62.

FIGURE 2

Probability density function

Curve of sampliQg
distribution for 01

0 0 Values

of CI

FIGURE 3

Probability density function

Curve of samplpg
distribution for 02

7 0 0 ValRes
d 02



Since the variance in Figure 2 is less than the variance in Figure 3, it can be

said that 01 is more efficient than 02. The relative efficiency, used in

measuring efficiency, is the ratio of the variances of twc unbiased estimators.

SUFFICIENCY

Sufficiency is the last property of estimators. Harnett (1970, p. 193) defined

sufficiency as:

An estimator is said to be sufficient if it utilizes all of the information

about the population parameter that is contained in the sample data.

The range is not sufficient because it only considers the highest and lowest

data points. The median is not sufficient unless only ranked observations are

available. The sample mean, IA, is sufficient as an estimator of g since it uses

all the observed values. The variance is also sufficient since the sample mean

is used in calculating the variance.

COMPUTER EXAMPLE

A BASIC computer program, written by Groeneveld (1979) and adapted by

Bruce Thompson, was used to demonstrate this bias concept. The program is

presented in Appendix A. A Monte-Carlo technique, defined by Danesh

(1987, p. 30) as "a system of techniques which enables us to model physical

systems conveniently in a computer", was used in this program. The samples

were taken from a standard normal distribution (mean=0 and standard

deviation=1.) The user is requested to declare a sample size us" and the

number of samples to be drawn. Since the population variance is 1.0, and

8
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v riance equals the sum-of-squares/(n-1) for a sample, the expected value for

the sum-of-squares(SOS) is n-1. The mean of the SOS estimates over

repeated samples should equal n-i. The estimated variances should be

closer to the population variance (a2=1) as increases and as the number of

repeated samples increases.

Examples using the program are included in Appendix B. Table 1 presents

a summary of the examples presented in Appendix B. Referring to Table 1,

the deviation between the expected SOS and the actual SOS tends to get

smaller as either sample size or number of samples increases, as expected.

CONCLUSION

In summary, the four properties, unbiaseciness, consistency, efficiency,

and sufficipncy,explain criteria for choosing an estimator. The properties do

not specify how to find an estimator which will have some or all these

properties. There are several methods, such as the method of moments, the

method of maximum likelihood, and the method of least squares, which can be

used to determine "good" estimators. They are not discussed in this paper

and would be oxcellent research topics for future papers.

9
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TABLE 1

Fxample 1 Example 2

n=5 n=10

k=50 k=50

M SOS= 3.488033 IA SOS= 9.637742

d=(n-1) - M SOS d=(n-1) IA SOS

di = 0.511967 d2= -0.637742

Example 3 Example 4 Example 5

n=5 n=10 n=20

k=100 k=100 k=100

IA SOS= 3.735797 M SOS= 8.714642 M SOS= 18.97739

d=(n-1) - M SOS d=(n-1) - IA SOS d=(n-1) - M SOS

d3= 0.264203 d4= 0.285958 d5= 0.02261
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APPENDIX A

10 REM PROGRAM SDMONTE.BAS
20 REM ADAPTED BY BRUCE THOMPSON 1/92

22 OPEN "0"11,"C:SDMONTE.OUT"
24 PRINT#1," SDMONTE.OUT FROM SDMONTE.BAS":SOSTOT=0:SOS=0
26 PRINT#1," PROGRAM ADAPTED BY BRUCE THOMPSON

1/92":PRINT#1," "
30 DIM F(35),BT(2000):CLS
31 A$=RIGHT$(TIME$12):S1=VAL(LEFT$(A$11)):S2=VAL(RIGHT$(A$11))
33 A=51A4+S2A3:IF (A*3)<32767 THEN A=A*3
34 IF S1<5 THEN A=A*-1
36 RANDOMIZE A:PRINT#1," RANDOM NUMBER SEED WAS ";A
40 FOR I = 1 TO 35
50 LET F(I)=0
60 NEXT I
70 PRINT "WHAT IS SAMPLE";" SIZE?"
82 INPUT N:PRINT#1," SAMPLE SIZE REQUESTED WAS ";N
90 PRINT "HOW MANY";" REPITIONS?"
100 INPUT K:PRINT#1," REPITIONS OF SAMPLING REQUESTED WAS ";K

110 FOR J=1 TO K
112 PRINT#1," "
120 FOR I=1 TO N
130 GOSUB 410
140 LET S=S+Z:LET BT(I)=Z
152 PRINT#1," ";J;" ";I;" ";Z
160 NEXT I
170 LET X1=S/N
172 FOR L=1 TO N
173 LET BT(L)=BT(L)-Xl:LET SOS=S0S+(BT(L)^2)
174 CLS:PRINT" ":PRINT" ":PRINT" ";J;" ";L

175 NEXT L
178 SOSTOT=S0S+SOSTOT
180 LET V=(SOS)/(N-1)
182 PRINT#1," SAMPLE".;J:PRINT#1," MEAN,---";X1

184 PRINT#1," SOS=";SOS;" N=";N;" CORRECTED V=";V
190 FOR C=1 TO 30
200 IF V>C/5 THEN 230
210 LET F(C)=F(C)+1/K
220 GOTO 260
230 IF C<30 THEN 250
240 LET F(C)=F(C)+1/K
250 NEXT C
260 LET 5=0
272 LET SOS=0
280 NEXT J
290 PRINT#11" "
300 PRINT#1,"FREQUENCY ";"DISTRIBUTION OF"';" VARIANCES"

310 PRINT#1," "
320 PRINT#1,"LOWER END";" UPPER END";" REL FREQ"
330 FOR C=1 TO 30
340 PRINT#1,(C-1)/51C/5,F(C)
350 LET T=T+F(C)
360 IF T>=0.999999 THEN 380
370 NEXT C
380 PRINT#1," ":SOSTOT=SOSTOT/K



390 PRINTOWTOTAL FREQ= ";T:PRINT#1," "
392 PRINTOWTHERE WERE";K;" SAMPLES OF SIZE";N
394 PRINT#1,"THE AVERAGE SOS SHOULD EQUAL N-1, OR";N-1
396 PRINT#1,"THE MEAN SOS OVER";K;" SAMPLES WAS";SOSTOT
400 CLOSE #1:GOTO 450
410 LET Z1=SQR(-2*LOG(RND))
420 LET Z2=6,2831853*RND
430 LET Z=Z1*COS(Z2)
440 RETURN
450 END



APPENDIX B

EXAMPLE 1

SDMONTE.OUT FROM SDMONTE.BAS
PROGRAM ADAPTED BY BRUCE THOMPSON 1/92

RANDOM NUMBER SEED WAS -6
SAMPLE SIZE REQUESTED WAS 5

REPITIONS OF SAMPLING REQUESTED WAS 50

1 1 .3824551
1 2 -.1424869
1 3 2.041772
1 4 1.488733
1 5 .6958976

SAMPLE 1
MEAN= .8932742
SOS= 3.046314 N= 5 CORRECTED V= .7615785

2 1 1.907196
2 2 .8472512
2 3 1.158412
2 4 .3580843
2 5 .7014885

SAMPLE 2
MEAN= .9944864
SOS= 1.372444 N= 5 CORRECTED V= .343111

3 1 -1.679582
3 2 7.326465E-02
3 3 -.1711201
3 4 -.9935407
3 5 .2426568

SAMPLE 3
MEAN=-.5056642
SOS= 2.623169 N= 5 CORRECTED V= .6557923

4 1 .8721311
4 2 .2723533
4 3 -.6668983
4 4 -.4930475
4 5 7.062878E-02

SAMPLE 4
MEAN= 1.103349E-02
SOS= 1.527018 N= 5 CORRECTED V= .3817545

5 1 -.9698443
5 2 -1.264896
5 3 -.3550073
5 4 -1.034422
5 5 .3254847

SAMPLE 5
MEAN=-.659737
SOS= 1.666295 N= 5 CORRECTED V= .4165736

6 1 4.348573E-02
6 2 .8014679



42 3 -2.025705
42 4 .1316303
42 5 .4965793

SAMPLE 42
MEAN=-.3133354
SOS= 5.464818 N= 5 CORRECTED V= 1.366204

43 1 .7499443
43 2 -.2970279
43 3 1.494941
43 4 -1.512662
43 5 -1.689349

SAMPLE 43
MEAN=-.2508307
SOS= 7.712958 N= 5 CORRECTED V= 1.928239

44 1 1.187843E-02
44 2 -.3291145
44 3 .3903748
44 4 .1354732
44 5 -1.782711

SAMPLE 44
MEAN=-.3148198
SOS= 2.961703 N= 5 CORRECTED V= .7404257

45 1 -1.365308
45 2 -.8296563
45 3 -1.539058
45 4 -.1202354
45 5 -.1267986

SAhPLE 45
MEAN=-.7962112
SOS= 1.781867 N= 5 CORRECTED V= .4454668

46 1 .1714068
46 2 .5069509
46 3 -.125097
46 4 -.716944
46 5 .6539771

SAMPLE 46
MEAN= 9.805878E-02
SOS= 1.195646 N= 5 CORRECTED V= .2989115

47 1 -.8491488
47 2 .3735188
47 3 .5075592
47 4 -.1229607
47 5 .4854995

SAMPLE 47
MEAN= 7.889358E-02
SOS= 1.337894 N= 5 CORRECTED V= .3344736

48 1 -.3869946
48 2 .111407
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48 3 -1.337579
48 4 -.43302
48 5 -3.649609E-02

SAMPLE 48
MEAN=-.4165366
SOS= 1.272619 N= 5 CORRECTED V= .3181548

49 1 2.246834
49 2 .9241474
49 3 -1.300303
49 4 .3597518
49 5 -1.010265

SAMPLE 49
MEAN= .244033
SOS= 8.445396 N= 5 CORRECTED V= 2.111349

50 1 -1.951918
50 2 -.3059856
50 3 4.825774E-02
50 4 -.9457846
50 5 .8500972

SAMPLE 50
MEAN=-.4610666
SOS= 4.460201 N= 5 CORRECTED V= 1.11505

FREQUENCY DISTRIBUTION OF VARIANCES

LOWER END UPPER END REL FREQ
0 .2 .04
.2 .4 .18
.4 .6 .16
.6 .8 .2

.8 1 .08
1 1.2 9.999999E-02
1.2 1.4 .06
1.4 1.6 .04
1.6 1.8 .04
1.8 2 .06
2 2.2 .04

TOTAL FREQ= .9999999

THERE WERE 50 SAMPLES OF SIZE 5
THE AVERAGE SOS SHOULD EQUAL N-1, OR 4
THE MEAN SOS OVER 50 SAMPLES WAS 3.488033



EXAMPLE 2

SDMONTE.OUT FROM SDMONTE.BAS
PROGRAM ADAPTED BY BRUCE THOMPSON 1/92

RANDOM NUMBER SEED WAS -1797
SAMPLE SIZE REQUESTED WAS 10

REPITIONS OF SAMPLING REQUESTED WAS 50

1 1 1.051235
1 2 -.9002343
1 3 -.2513088
1 4 .0783185
1 5 -.6785592
1 6 -.6381989
1 7 1.15251
1 8 .5070424
1 9 -.4532294
1 10 -2.256471

SAMPLE 1
MEAN=-.2388895
SOS= 9.164312 N= 10 CORRECTED V= 1.018257

2 1 -.4582848
2 2 -.8816874
2 3 -1.155471
2 4 .2466978
2 5 .6125487
2 6 2.679835
2 7 .1570069
2 8 .6641071
2 9 1.849959
2 10 -1.624337E-02

SAMPLE 2
MEAN= .3698468
SOS= 12.46053 N= 10 CORRECTED V= 1.384504

3 1 1.079786
3 2 -.2666005
3 3 -2.225359
3 4 .9149314
3 5 -1.753282
3 6 -.6705306
3 7 .7402433
3 8 -.5050923
3 9 -.9221319
3 10 1.060137

SAMPLE 3
MEAN=-.2547899
SOS= 12.67806 10 CORRECTED V= 1.408674

4 1 .4536214
4 2 -.2034944
4 3 1.652726
4 4 .7850095
4 5 -.7103371

2 0



,

MEAN=-.2022671
SOS= 14.69924 N= 10 CORRECTED V= 1.633249

47 1

47 2

47 3

47 4

47 5

47 6

47 7

47 8

47 9

47 10
SAMPLE 47

MEAN= .3209643
SOS= 16.13574 N= 10 CORRECTED V= 1.792859

.4181669

.1474964
-1.929325
1.757017
1.599262

-1.337078
-.3112722
1.392713

-.4241802
1.896842

48 1 1.330566
48 2 .1593396
48 3 -.6979415
48 4 1.124701
48 5 -.8490906
48 6 -.7295691
48 7 1.155638
48 8 -1.440681
48 9 6.421478E-02
48 10 -.6832205

SAMPLE 48
MEAN=-5.660436E-02
SOS= 8.651028 N= 10 CORRECTED V= .9612252

49 1 -.9737036
49 2 -1.862909E-02
49 3 .64833
49 4 .6114015
49 5 -.9269398
49 6 -1.574742
49 7 .1073893
49 8 .9131689
49 9 -2.633728
49 10 1.323498

SAMPLE 49
MEAN=-.2523954
SOS= 13.97816 W= 10 CORRECTED V= 1.553129

50 1 .9240689
50 2 1.519857
50 3 .4949289
50 4 1.281391
50 5 -.3697424
50 6 .1431352
50 7 -.5908048
50 8 -6.102137E-02
50 9 1.623422



50 10 -.3006039
SAMPLE 50

MEAN= .466463
SOS= 6.110741 N= 10 CORRECTED V= .6789712

FREQUENCY DISTRIBUTION OF VARIANCES

LOWER END UPPER END REL FREQ
0 .2 0

.2 .4 .06

.4 .6 .08

.6 .8 .16

.8 1 9.999999E-02
1 1.2 .24

1.2 1.4 .14

1.4 1.6 .12
1.6 1.8 9.999999E-02

TOTAL FREQ= .9999999

THERE WERE 50 SAMPLES OF SIZE 10
THE AVERAGE SOS SHOULD EQUAL N-1, OR 9
THE MEAN SOS OVER 50 SAMPLES WAS 9.637742



EXAMPLE 3

SDMONTE.OUT FROM SDMONTE.BAS
PROGRAM ADAPTED BY BRUCE THOMPSON 1/92

RANDOM NUMBER SEED WAS -27
SAMPLE SIZE REQUESTED WAS 5

REPITIONS OF SAMPLING REQUESTED WAS 100

1 1 1.06045
1 2 -.6737673
1 3 .8599736
1 4 -.0450945
1 5 -.7684606

SAMPLE 1
MEAN= 8.662023E-02
SOS= 2.873121 N= 5 CORRECTED V= .7182803

2 1 -1.124
2 2 .8294068
2 3 -.3992898
2 4 -.2065119
2 5 -.7937864

SAMPLE 2
MEAN=-.3388363
SOS= 2.209418 N= 5 CORRECTED V= .5523545

3 1 -.1758775
3 2 -.1646739
3 3 -1.631368
3 4 -1.158088
3 5 -.4536565

SAMPLE 3
MEAN=-.7167326
SOS= 1.697854 N= 5 CORRECTED V= .4244635

4 1 -.615754
4 2 1.162127
4 3 -.8984321
4 4 .6660625
4 5 .4664898

SAMPLE 4
MEAN= .1560986
SOS= 3.07629

5 1 .4817174
5 2 -.96671
5 3 -.9364807
5 4 -.4222362
5 5 -1.167957

SAMPLE 5
MEAN=-.6023333
SOS= 1.771956

N= 5

N= 5

CORRECTED V=

CORRECTED V=

.7690726

.442989

6 1 1.121774
6 2 -.3654257



96 3 7.596554E-02
96 4 -.8280181
96 5 .4372302

SAMPLE 96
MEAN= 7.842743E-02
SOS= 2.886822 N= 5 CORRECTED V= .7217056

97 1 .4087028
97 2 -1.486042
97 3 1.133285
97 4 -.4592905
97 5 -.5068236

SAMPLE 97
MEAN=-.1820338
SOS= 3.96183 N= 5 CORRECTED V= .9904574

98 1 -.4690478
98 2 -4.930116E-02
98 3 .3568874
98 4 -.4764273
98 5 -.223879

SAMPLE 98
MEAN=-.1723536
SOS= .478381 N= 5 CORRECTED V= .1195952

99 1 -1.915549
99 2 .1783297
99 3 1.594652
99 4 .1082491
99 5 -1.782255

SAMPLE 99
MEAN=-.3633146
SOS= 8.772204 N= 5 CORRECTED V= 2.193051

100 1 -.131384
100 2 -.4776703
100 3 -.1754611
100 4 -2.606694
100 5 -.4609728

SAMPLE 100
MEAN=-.7704365
SOS= 4.315707 N= 5 CORRECTED V= 1.078927

FREQUENCY DISTRIBUTION OF VARIANCES

LOWER END UPPER END REL FREQ
o .2 .06
. 2 .4 .17
.4 .6 .15
. 6 .8 .17
. a 1 .13

1 1.2 .08
1.2 1.4 .04

1.4 1.6 .04



1.6 1.8 .01
1.8 2 .04
2 2.2 .04
2.2 2.4 .03
2.4 2.6 .01
2.6 2.8 .01
2.8 3 .01
3 3.2 0

3.2 3.4 0

3.4 3.6 0

3.6 3.8 0

3.8 4 .01

TOTAL FREQ= 1

THERE WERE 100 SAMPLES OF SIZE 5
THE AVERAGE SOS SHOULD EQUAL N-1, OR 4
THE MEAN SOS OVER 100 SAMPLES WAS 3.735797



EXAMPLE 4

SDMONTE.OUT FROM SDMONTE.BAS
PROGRAM ADAPTED BY BRUCE THOMPSON 1/92

RANDOM NUMBER SEED WAS -849
SAMPLE SIZE REQUESTED WAS 10
REPITIONS OF SAMPLING REQUESTED WAS 100

1 1 1.160466
1 2 -.7973283
1 3 -.5663562
1 4 -.3749902
1 5 -.7441588
1 6 .3732632
1 7 -.4666904
1 8 3.724473E-02
1 9 .3368249
1 10 -.7284982

SAMPLE 1
MEAN=-.1770223
SOS= 3.686867 N= 10 CORRECTED V= .4096519

2 1 .254492
2 2 -1.785408
2 3 .2480187
2 4 .5004284
2 5 .7799193
2 6 .2109243
2 7 .166352
2 8 -.8893287
2 9 .295921
2 10 -.1821375

SAMPLE 2
MEAN=-4.008183E-02
SOS= 5.140408 N=

3 1 .1701517
3 2 .1300232
3 3 1.574309
3 4 .3778581
3 5 1.167504
3 6 .5027012
3 7 .5825673
3 8 -.2600921
3 9 .182062
3 10 -.472255

SAMPLE 3
MEAN= .3954829
SOS= 3.381993 N=

10

10

CORRECTED V=

CORRECTED V=

.5711564

.375777

4 1 -.2924565
4 2 .5006929
4 3 -1.804697
4 4 .8749314
4 5 1.148781



97 1

97 2

97 3

97 4

97 5
97 6

97 7

97 8

97 9

97 10
SAMPLE 97

MEAW, .2576295
SOS= 14.80933 N= 10 CORRECTED V= 1.645481

.8007315
-.139967
-.8739483
- 1.636612
1.432342
1.018281

- 1.181956
-.4883819
1.819207
1.826599

98 1 .2663514
98 2 -.2190415
98 3 -.9627011
98 4 -1.614677
98 5 -.5506749
98 6 -1.043779
98 7 -3.721359E-02
98 8 .9502709
98 9 1.157725
98 10 -.3245938

SAMPLE 98
MEAN=-.2378333
SOS= 6.830055 N= 10 CORRECTED V= .758895

99 1 6.554232E-02
99 2 2.068519
99 3 -.1749714
99 4 -1.493213
99 5 -.7910946
99 6 .:3286946
99 7 -.3516004
99 8 1.229989
99 9 .1529801
99 10 -.2458877

SAMPLE 99
MEAN= 7.889577E-02
SOS= 8.935349 N= 10 CORRECTED V= .9928165

100 1

100 2

100 3

100 4

100 5

100 6

100 7

100 8

100 9

100 10
SAMPLE 100

-1.596557
. 6865393
. 7121635
1.036351
1.284166
. 5735763
.8916395

-.613827
-.4905225
-.6363868

27



MEAN= .1847142
SOS= 8.055815 N= 10 CORRECTED V= .8950905

FREQUENCY DISTRIBUTION OF VARIANCES

LOWER END UPPER END REL FREQ
0 .2 0

.2 .4 8.999999E-02

.4 .6 .19

.6 .8 .13

.8 1 .15

1 1.2 .15

1.2 1.4 8.999999E-02

1.4 1.6 .07

1.6 1.8 .08

1.8 2 .04

2 2.2 .01

TOTAL FREQ= .9999999

THERE WERE 100 SAMPLES OF SIZE 10
THE AVERAGE SOS SHOULD EQUAL N-1, OR 9

THE MEAN SOS OVER 100 SAMPLES WAS 8.714042

28



EXAMPLE 5

SDMONTE.OUT FROM SDMONTE.BAS
PROGRAM ADAPTED BY BRUCE THOMPSON 1/92

RANDOM NUMBER SEED WAS -1536
SAMPLE SIZE REQUESTED WAS 20
REPITIONS OF SAMPLING REQUESTED WAS 100

1 1 -.2248201
1 2 .5194963
1 3 2.017076E-02
1 4 .2892476
1 5 .5039074
1 6 -.6579888
1 7 -7.678485E-02
1 8 .817639
1 9 -.751547
1 10 -1.217435E-03
1 11 .2407511
1 12 .3215078
1 13 .3680337
1 14 1.353352
1 15 .3950442
1 16 .3534379
1 17 -1.405061
1 18 1.386417
1 19 -.3351373
1 20 -.2328126

SAMPLE 1
MEAN= .1441818
SOS= 8.387035 N= 20 CORRECTED V= .4414229

2 1 4.855903E-02
2 2 .3045103
2 3 .8718381
2 4 -1.468055
2 5 -.859302
2 6 -.244534
2 7 -1.552927
2 8 -.2409446
2 9 .5322713
2 10 -1.677375
2 11 -.7514218
2 12 -1.038251
2 13 -.1949617
2 14 -1.110046
2 15 -.1706596
2 16 .6479734
2 17 -.4112441
2 18 .4571693
2 19 -.5458564
2 20 -1.323593

SAMPLE 2
MEAN=-.4363424
SOS= 11.357 N= 20 CORRECTED V= .5977367



97 12 -.3483107
97 13 -.1532237
97 14 6.140356E-02
97 15 .9914996
97 16 1.071523
97 17 .8948534
97 18 -.8322707
97 19 .9580903
97 20 .8942671
SAMPLE 97

MEAN= .1711396
SOS= 11.24199 N= 20 CORRECTED V= .5916839

98 1 -.3523787
98 2 -.9466435
98 3 -.8661198
98 4 .9511314
98 5 -.5021839
98 6 -.7183605
98 7 1.306827
98 8 .431532
98 9 -1.084639
98 10 -2.386106
98 11 .6624868
98 12 .4211462
98 13 -.3929444
98 14 -2.081142
98 15 -.1886418
98 16 .3934765
98 17 -.6623733
98 18 .5852647
98 19 -.3208738
98 20 -1.382802

SAMPLE 98
MEAN=-.3566672
SOS= 17.75167 N= 20 CORRECTED V= .9342986

99 1 -1.003863
99 2 -.6275403
99 3 .6826761
99 4 .1200453
99 5 -7.134871E-02
99 6 7.569096E-02
99 7 -1.01107
99 8 -.8277139
99 9 .8007606
99 10 .3926594
99 11 -.3319511
99 12 2.14052
99 13 -.3677893
99 14 -.3481696
99 15 .4060895
99 16 -.1998698
99 17 .4894969



99 18 .5335158
99 19 1.443584
99 20 -.3452382

SAMPLE 99
MEAN= 9.752419E-02
SOS= 12.08611 N= 20 CORRECTED V= .6361111

100 1 -1.246749
100 2 2.044941
100 3 .8018891
100 4 1.941687
100 5 -.4189042
100 6 1.443439
100 7 1.248126
100 8 2.682492
100 9 -1.521015
100 10 1.03973
100 11 1.197226
100 12 -.5914441
100 13 -.965593
100 14 5.395073E-02
100 15 -.3916252
100 16 .277603
100 17 1.33914
100 18 .801004
100 19 -.3931427
100 20 -.6614072

SAMPLE 100
MEAN= .4340674
SOS= 26.76395 N= 20 CORRECTED V= 1.408629

FREQUENCY DISTRIBUTION OF VARIANCES

LOWER END UPPER END REL FREQ
0 . 2 0

. 2 . 4 0

. 4 .6 8.999999E-02

. 6 .8 .14

. 8 1 .29

1 1.2 .27

1.2 1.4 .11

1.4 1.6 8.999999E-02
1.6 1.8 0

1.8 2 0

2 2.2 0

2.2 2.4 0

2.4 2.6 .01

TOTAL FREQ= .9999999

THERE WERE 100 SAMPLES OF SIZE 20
THE AVERAGE SOS SHOULD EQUAL N-1, OR 19

THE MEAN SOS OVER 100 SAMPLES WAS 18.97739


